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ABSTRACT

Various Symbolic Manipulation Programs have been tested to check the
functioning of their commands and suitability under various operating
systems. Support services for SMP have been found to be relatively better
than the one for MACSYMA. The graphics facilities for MACSYMA does not work'
as expected under UNIX operating -system. Not all the commands for MACSYMA
function as described in manuals.

Shape representation has been a central issue in computer graphics and
computer-aided design. Aside from appearance, there are other application
dependent, desirable properties like continuity to certain order, symmetry,
axis-independence and variation-diminishing properites. Several shape
representations are studied, which include the Osculatory Method, a
Piecewise Cubic Polynomial Method using two different slope estimates,
Piecewise Cubic Hermite Form, a method by Harry MclLaughlin, and a Piecewise
Bezier Method. They are applied to collected physical and chemical data.
Relative merits and demerits of these methods and examined.

Kinematics of a single 1link, non-dissipative robot arm is studied using
MACSYMA. Lagranian is set-up and Lagrange's equations are derived. From
there, Hamiltonian equations of motion are obtained. Equations suggest that
bifurcation of solutions can occur, depending upon the value of a single
parameter. Using the characteristic function W, Hamilton-Jacobi equation is
derived. >It is shown that H-J equayion can be solved in closed form.

Analytical solutions to H-J equation are obtained.

ii



I. INTRGDUCTION

This project started in August, 1983 and ended in December, 1986. From
August, 1983 till August, 1986; Dr. Shantilal Shah was the Principal
Investigator. Dr. Shah left Hampton University in September, 1986. Or.
Alkesh Punjabi was Principal Investigator from September, 1986 to December,
1986. Dr. John Wiggs, Dr. Maria Lam and Dr. Alkesh Punjabi have been
Associate Investigators in this project for varying durations. Dr. John
Wiggs is no more with Hampton University.

Hampton University has benefited by this project in a number of ways.
A number of students learnt how to use symbolic manipulation programs like
MACSYMA, SMP, NUMATH and others. These students were blaqk minority
students. The working knowledge and experience of symbolic manipulation
programs and their application to problems will definitely help these
students when they enter the market place for job.

The faculty members who were involved in the project have also -
benefited. They were able to learn and use one of the most important tools
in modern mathematical and physical sciences research. It is generally
accepted that symbolic manipulation programs are such a tool. This project
helped the faculty in carrying out research using MACSYMA and SMP.

This project has also been helpful to the recently started graduate
program in App]ied Mathematics by way of the graduate research
assistantships hade available to graduate students in this program. The
work done unde} this project may be the dissertation material for one
candidate for M.S. in Applied Mathematics. The computer, the hardware and
software made available to Hampton University under this project has been of

immense value to the University and especially to the Computer Science



Department. These computational capabilities have facilitated the teaching
of a number of courses in the computer science curricula. It has also
helped the research activities of mathematics, computer science, and physics
departments.

In short, one can definitely assert that this project has been of great
benefit and help to the University in many ways.

On the other hand, NASA LaRC has also benefited by this project. NASA
LaRC was provided access to MACSYMA and SMP on VAX computers at Hampton
University. Also, under this project, the MACSYMA, SMP, and other programs
were tested and the defected commands and functions which did not work or
did not work as postulated were detected and pointed out. It is hoped that
these aspects of the project have been of use to NASA LaRC.

Three contributed papers were presented on research done under this
project. The details of these are given elsewhere in this report.

The rest of this report is organized as follows:

Sections 2, 3, and 4 detail the work or research done by Dr. Shah, Dr.
Lam and Dr. Punjabi respectiye]y under this project. tach section is
writtenvby the faculty member concerned. Section 5 gives the details of the

contributed papers.



II. Evaluation of Some Symbolic Manipulation Software

In 1984, Hampton University purchased VAX-11/780 computer with 4
megabytes memory with VMS operating system and installed REX-MACSYMA
software purchased from Symbolics Inc. MACSYMA is a symbolic manipu]ation
software which was developed at M.I.T. over the period of the last 20 years.
It was developed and resided on Digital Equipment Corporation PDP-10
Computer. Many scientists at M.I.T. had also created 1ibrary packages to
solve various problems in pure and applied mathematics and it was made
available for public use under shared libraries under MACSYMA. MACSYMA has
also capabilities for point-graphs and 2 and 3 dimensional line-graphs.
MACSYMA software became an important tool in research and development in
solving difficult problems in the fields of pure and applied mathematics,
engineering, physics, aerodynamics and several other disciplines. In 1983,
M.I.T. sold the marketing and support of MACSYMA to SYMBOLICS Inc.

SYMBOLICS Inc. started distribution of MACSYMA software which ran on
VAX-11/780 computer under VMS operating system in 1983. When it was
installed on VAX-11/780 computer running under VMS at Hampton University in
1984, it was able to support most of MACSYMA commands available in the
language. The investigators spent spring and summer of 1984 in beta testing
of the software. The line-graphic support was not available on REX-MACSYMA.
There were some other bugs in few MACSYMA commands. The shared library
packages were available on REX-MACSYMA software for use, but none of them
were working. This information was conveyed to Symbolics Inc. at the
MACSYMA Conference at Schnectudy, N.Y. in summer of 1984. People from
Symbolics Inc. told the investigators that shared_]ibraries were not the

part of MACSYMA software package, they were not responsible for its support,
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and Hampton University was not supposed to have it on its machine. The
Symbolics Inc. also acknowledged that they had problems in supporting of
line-graphics, both two and three dimensions, capabilities of MACSYMA at the
time and they were working on the problems. The execution speed of various
commands of REX-MACSYMA was also considerably slower compared to the
software running at M.I.T.

In spring of 1984, Wollongong Inc. came out with a software named
EUNICE, which works like UNIX operating system. It supports all of the UNIX
operating system commands and runs under VMS operating system. When it is
installed on VAX-11 machine running under VMS operating system, the user has
advantage of using both VMS and UNIX operating system commands. EUNICE
software imulates UNIX operating system running under VMS. Investigators
inquired with Symbolic Inc. whether they had developed a version of MACSYMA
which runs under EUNICE operating systems and whether EUNICE-MACSYMA will
support line-graphics capabilities of MACSYMA. Symbolics Inc. informed the
investigators that they had EUNICE-MACSYMA and the version supported line
graphics. In 1985, Hampton University iﬁvestigators purchased and installed
EUNICE operating system from Wollongong Group Inc., and swapped REX-MACSYMA
for EUNICE-MACSYMA with Symbolics Inc. Investigators also purchased SMP
software developed by InferenceICorporation. SMP is a symbolic manipp]ation
program like MACSYMA, which has capabilities to perform symbolic
computations and graphics for two and three dimensions. SMP software can

run under either VMS operating system or UNIX operating system on VAX-11

“computers. Investigators have performed comparison of execution times of

SMP commands and MACSYMA commands running under VMS operating system. SMP
software supports graphics capabilities on various graphics terminals.

EUNICE-MACSYMA, 1ike REX-MACSYMA can do point plots, but does not support



line graphics either on Digital's GIGI graphics terminals or Tektronix
graphics terminals. This was again brought to the attention of people at
Symbolics Inc. Inquiries were again made with Symbolics Inc. whether the
UNIX version of MACSYMA available from Symbolics Inc. was able to support
line-graphics and whether they can provide the names of the institutions or
companies which are currently users of UNIX-MACSYMA. The reply of Symbolics
Inc. was that UNIX-MACSYMA does support line graphics on Tektronix terminals
and due to some Symbolic Inc. policy, they cannot give out the names of
UNIX-MACSYMA users. Hampton University installed UNIX operating system on
its VAX-11/780 computer in February of 1986 and also installed UNIX version
of MACSYMA on VAX-11/780 computer. Experiments were performed to test
graphics capabilities of UNIX-MACSYMA on tektronix terminals. The results
of these experiments showed that, the software was not working correctly as
desired. Some of the drivers routines required to support graphics were not
available. Symbolics Inc. tried to evade the responsibilities for not
having driver routines instead they tried to find fault with UNIX operating'
system and tektronix graphic terminals. Finally in June of 1986, Jeffery P,i
Golden at Symbolics Inc., looked into the problem and found out that g
graphics capabilities on UNIX-MACSYMA were not working properly. In August
1986, at the Stanford University meeting, he told that he and other pﬁople
at Symbolics Inc. were working on the problem and it will be sometime before
the problem is corrected.

Since Symbolics Inc. acquired the distribution of MACSYMA software,
their support for the software is totally unsatisfactory and the graphic
capabilities (line) is not working on any of their versions REX, EUNICE or
UNIX. So far, they are not truthful about giving information on graphics

capabilities of MACSYMA. They are charging about $350.00 for support



service on MACSYMA, and customers do not get any support from the service.
The shared libraries are not available for MACSYMA users.

SMP software is comparatively new and young in the market. Some of its
commands are also not working properly. But their support is very
excellent. The graphics capabilities on SMP is very good and works
correctly. Some of the commands like 'XTHRU' which is available in MACSYMA
are not implemented on SMP. But users can get the reguired results by
implementing those with existing commands. The user's>manua1 for SMP is not
easy to understand for implementing and using all the capabilities of SMP.
The people at Inference Corporation are willing to help and guide the users
to overcome the shortcomings of the manual. The investigators found that
one of the routines in SMP library, namely FELIP had some bug in it and it
was reported to Inference Corporation. We believe, it is corrected now.
Richard Fateman of the University of California at Berkeley, performed
various experiments with SMP and published various SMP shortcomings of the

software in ACM's SIGSAM BUlletin of August 1985. These experiments were

- performed on SMP version 1.3 Inference Corporation updated version 1.5 of

SMP still has some of the old problems. For example, if is unable to factor
simple algebraic expression X6-a6. It exhausts memory even if you start
fresh. This is not an isolated case. Inference claims that these problems
are scheduled for work prior to next release. A -

The other symbolic softwares 1ike REDUCE and MAPLE is also available
for VAX-11/780 computers. MAPLE and REDUCE, both do not support graphics.
MAPLE is good for the university environment, in the sense, it does not take
up lot of memory, and many users can access the same time. One MACSYMA user

requires 1.5 megabyte compared to 100K for MAPLE. MAPLE is still under

development and it has limited capabilities compared to MACSYMA. REDUCE is



around for a long time and it is widely used in industries and universities’
in U.S. and Europe. Recently, it was announced that REDUCE is now available
for CDC-CYBEZR-170 series.

O0f all different kinds of symbolic manipulation software, according to
these investigators, MACSYMA has the best capabilities. But the support
needed for maintenance and development for users of MACSYMA is not available
from Symbolics Inc. It seems they are more interested in implementing
MACSYMA on single user machines, rather than supporting MACSYMA software for
multiuser machines like VAX-11 series. In these respects, SMP software is
much desirable due to its capabilities and support given by Inference
Corporation.

The investigators have performed comparison of execution times of some

commands in MACSYMA and SMP.

GENTRAN:

A software package 1mp1eméntated in RLISP is now available for code
generation and translation and it %uns under REDUCE. It generates complete
numerical programs directly from QEDUCE by transforming REDUCE prefix forms
into formatted FORTRAN, RATFOR or C code. Assignment statements, control
structures, type declarations and subprogram headings can be generated from
algorithmic specifications and symbolically derived’formulas. An expression
segmentation facility breaks large expressions into subexperssions of
manageable size, and an interface to an existing code obtim{zer allows
sequences of assignment statements to be replaced by their oﬁtimized
equivalents. In addition, special file-handling facilities allow code
generation to be guided by template files and output to be redirected to one

or more files. GENTRAN provides the flexibility necessary to handle most



~ code generation application under REDUCE. Wm Leler and Neil Soiffer, of

Tektronix Inc. has developed a system which is available for workstations to
do graphics and pretty pointing for REDUCE. REDUCE was chosen over other
symbolic algebra systems primarily because of its low cost and availability

of source code.



III. REPRESENTATIONS OF SHAPE

Introduction:

In computer graphics and computer-aided design, the problem of shape
representation and design is a central issue. We are not only concerned
with pictures but also with providing a geometrical model or database which
is used for design, analysis and production. Shape representation raises
many difficulties. There are no well-established criteria for arriving at
an appropriate mode of description. Approaches to shape and form'
description are usually highly intuitive and adhoc responses to practical
needs.

In the early sixties, Charles Coons of M.I.T. initiated some elegant
and precise methods to represent shapes. His methods were quickly adopted
by industry; gehera]ized'and improved by many researchers. Coons employed
parametric forms to describe curves and surfaces to obtain axis-independent
shape descriptions. This also allows the description of closed curves. His
methods are also piecewise. No attempt is made to represent an entire curve
or surface by a single analytic function. Curves and surfaces are
constructed piecewiSe, then they are sewn together with specified continuity
condition. P. Bezier proposed a similar idea. Coons' blending functions
become the basis functions for Hermite interpolation and Bezier's blending
functions are the basis functions for Bernstein approximation.

A matheméticai representation of shape can oe obtained in two basic
ways: design and f{tting. In design, the problem is to create (or modify an
existing) shape which satisfies certain constraints. It usually involves
making interactive changes in shapes and displaying them in real-time. In

fitting, the problem is to obtain a mathematical representation for an



existing shape which is not mathematically defined but exists as a physical
model from which data points can be measured.

Traditionally, there are two approaches to these problems:
approximation or interpolation. Interpolation means the shape matches the
given data exactly and approximation means one nearly matches the data.
Most scientific representation of informations requires approximations at
some level. The approximation might occur at the level of equations that
model the physical phenomenon, or at the level of the numerical solution of

these equations.

Properties of Shape Representation:

The requirements of the application and of the computer used to
generate these‘shapes (curves and surfaces) suggest that their
representation should have certain properties. Some of the important

requirements are listed below.

1. The representation should allow multiple values as in the case of

closed curves or surfaces.

2. Some smoothness is desired. It might be CO, C] or C2 continuity.

3. The representation must not lend itself to too much computation and

computer memory requirement.

4. The shape of an object is independent of its orientation with respect

to arbitrarily chosen coordinate axes. Hence it is desirable that its

mathematical representation be axis independent.

10



5. The method to generate these shapes can be local or global. Local
method is probably preferred because shape can be generated as soon as
some data points are available. It is also easier to control the

designed shape by making some modifications around the trouble area.

6. The mathematical representation should be variation-diminishing. [t
should smooth small irregularities of the data points instead of

amplifying them.

7. It is desirable that the same curve is generated when the data is
scanned from left-to-right or right-to-left. Hence the representation

should have symmetry property.

8. The representation should be versatile so that it provides a variety of

shapes.

The Represéntations:

A survéy has been conducted on some of the commonly used shape
representations]'4. None of these methods requires derivative informations
directly. Unlike what appeared in many articles on this topic (shape
representation), the data used in this study are collected physical and
chemical data and not artificial. SMP is used exclusively to conduct this
study. Result of this study is described in the following sections. The
discussion is based on some of the criteria described in the previous
section. Note that Bezier method is the only approximation, the rest

provides interpolation.

Assume there are N data points. They are represented as P](x],y]),

N



P2(x2,y2) cees PN(xN,yn) where Xy < Xp < el <Xy

Method A: Osculatory Method

Add two dummy data points PO and PN+1’ one before the first data point

and one after the last point.

For every i =1, 2, ..., N, define a quadratic polynomial Qi(x) =axl+

b x + con [xi, Xi+1] such that Qi(x) passes through P1_1, Py P1+1.

On [Xi’ x1+]], blend Qi(X)’ Q,(x), Q. ,,(x) to form ci(x) by using the

i+]
two blending functions as indicated below.

.i

X = X,

i+l i
X§.7 X4 Xie1 7 %4
These polynomical [ci(x) : i=1,2, ..., N-1] form a piecewise smooth

interpolant.

Method B: A Piecewise Cubic Polynomial Method

Add a dummy point PO before the first data point. Add P after the

N+1
last point .

ror every i =1, 2, 3, ..., N+1, calculate the slope m{ of line segment

Piors Py

Yi 7 Y4

X: = X
i X3-1

An estimated slope S5 associated with each point Pi(xi’ yi) is then
determined.
For every i =1, 2, ..., N,

)

s, = 0.5 (mi m

12



Define a cubic polynomial function ci(x) on [Xi’ Xi+1] such that c, (x)

interpolates P, _;, P,, P and c; {x;) = s;.

\MATY i
Piece these polynomials [ci(x) :i=1,2, ..., N-1] to form a smooth

interpolant over [x1, xN].

Method B': A Piecewise Cubic Polynomial Method with Akima's Slope Estimate
This method is identical to Method B except that the estimated slope F
at point Pi(xi’ y;) is defined as:
51 = M
s, =0.5 (m2 +mg)

and for every i = 3, ..., N-2

I - -
Mivp ™ Migy Ly + Iy omy Iy

. - . + . - R
Imiyp = Miyy | lomy_y - myd

which is a weighted average of Mmes Moy

Method C: A Piecewise Cubic Hermite Polynomial

The slope Si at data point Pi(xi’ yi) is estimated as in Method B. On
each interval [xi, x1+]], a cubic polynomial ci(t) in parameter t is
constructed by using blending functions as indicated.

3 2 3 2
- 3t° + 1) Pi + (-2t + 3t%) P1.+

c;(t) = (2t ;

1

3 2

(3 - 2t .

+t)P1f+(t3-t2)P

13



where 0 < t < 1.

These Ci|s , i=1,2, ..., N-1 give a smooth interpolant.

Method D: McLaughlin's Method

Each data point with the exception of the Tast point is classified as
“regular” or "irregular”. If a point Pi(xi’ yi) is irregular, a line
segment is drawn from this point to the next point Pi+](x1+], yi+]). If a
point is regular, a break point B(x', y') will be inserted between Pi and

Pi+1’ then a parabola passing through Pi and Pi+1 will be drawn.

Method E: Piecewise Bezier Method
Four control points will be used to construct a Bezier curve.

P(t) = X Ot Fa-nike

k=0

where 0O <t < 1.

Piece these curves together to get an approximation.

Data:

The data used to generate Figures 1 to 20 are given in Tables 1-5.
Water samples are collected from the same station at a depth of one meter.
Some physical measurements are taken. The samples are aiso analyzed for
some of their chemical contents. |

Variable x represents time in the unit of weeks, y represents the
measurement of a physical or chemical variable at low tide or high tide.
Table 1 shows Dissolved Silica content (in mg/1) at low tide (y1) and high

tide (y2). Similarly, Tables 2-5 show the measurements of Salinity

14



Conductivity, pH, Total Kjeldahl Nitrogen and Total Phosphate in appropriate

units at low tide and high tide.

~<
<
N

OO OOO — it b =ed 1
e o e 6 e s s e s =
PON—-WOHONNO D
OMN = OO =~ —d e O =
e o e & o & & e &
OO0~ WW

Bissolved Silica in mg/1

X : time in weeks
yl : Tlow tide data
y2 : high tide data

yl y2
20.5 21.1
23.1 23.2
25.2 -26.0
27.6 25.5
19.8 19.7
20.9 29.1
26.4 23.1
23.8 21.4
25.0 21.1
23.9 24.6
Salinity Conductivity
X : time in weeks
yl : Tlow tide data

y2 : high tide data

15
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X yi y2
1 8.45 8.28
2 7.98 8.45
5 8.62 8.31
6 7.87 8.16
7 8.06 7.81
9 8.46 8.23
11.5 7.77 8.21
14 7.68 8.10
17 8.12 8.23
22 8.25 7.98
Table 3. pH in standard unit

X ¢ time in weeks

yl : Tlow tide data

y2 : high tide data

X yl y2

1 0.351 0.909
2 0.158 0.342
5 0.698 1.173
6 0.868 0.884
7 0.765 0.571
9 0.500 0.621
11.5 1.320 1.084
14 0.552 0.705
17 1.912 1.111
22 1.088 0.533

Table 4. Total Kjeldahl Nitrogen in mg/1
X : time in weeks
yl : low tide data
y2 : high tide data

X vyl y2
1 0.134 0.182
2 0.059 0.157
5 0.065 0.042
6 0.052 0.053
7 0.080 0.100
9 0.042 0.060
11.5 0.190 0.192
14 0.018 0.034
17 0.157 0.171
22 0.041 0.000
Table 5. Total Phosphate in mg/1
x ¢ time in weeks
yl : Tlow tide data

y2 : high tide data
16



Conclusion: | )

The first three methods (A, B, B') desbribed in Section III define
polynomials on [x;, x; ;] using explicit form

y = f(x).
Hence none of them permits multiple-valued shapes. Cubic Hermite form,
Bezier curve and MclLaughlin's method provide curves of single-valued
functions as well as multiple-valued curves.

The osculatory method (A) matches first oréer derivatives at the two
end points of interval [Xi’ xi+]] as well as the data points Pi(xi’ yi) and
P1+](x1+1, y1+]). It is of order C]. This can be seen from the following

direct calculation. From Section III,

X" Xi X = X
c1(x) = qi(X) + qi+](x) on [Xi’ x1+]]
Xi T %4 41 T Xy
q;(x) X = Xiq g5 47 (x) X = Xy
cilx). = — + . q; (x) + - - + - ) Q547 (x)
i i+l i i+ i+l 74 i+l i
g; (x;) Q449 (x;)
cilx;) = +ogilx;) +
' ‘M
i 7 X Y41 7 X
q1(x1) - q1+](x1)
= +qy(x;)
i 7 X4
‘yl' = y'i
Xi = Xiq * qi(xi)
= q%(xi)
17



Similarly,

Cilxit1) = ay (X))

Cis1(Xi41)-

Methods B, B' define curves over [Xi’ X:.1] in such a way so that only Pos

i+]
Pi+1 and the first order derivative at X; are matched. As a result, they
only provide CO curves. Method C generates piecewise cubic Hermite

polynomials which are C] continuous. Mclaughlin's method is C0

continuous
since derivatives are not considered directly by this method at all. Bezier
method can supply continuity of any order provided the data points satisfy
certain conditions. In this investigation, the data poins are collected
data and will not satisfy those conditions. Hence the Bezier curves are
only CO continuous.

A1l methods described in Section III are local methods. Bezier method
is actually a global method. But in this investigation, a piecewise Bezier
curve is used instead of a single Bezier curve therefore it is considered as
a local method.

Bezier curves are symmetric due to the éymmetry of the Bezier blending

functions. Take four consecutive data points Pi’ P P P they

410 T2 Tie3

generate
3
- 3, Lk 1413k
P(t) = 3 () t0 (-t)7 7P, . 0<t<l
k=0
The points P. s, Piyps Piyys Py in this order (from right-to-left) generate

18



3
R(t) = 3 (3) £ (1-t)3% p
k=0 °

Take any to such that 0 < t, <1

3
) 3y 4 k (1_p 137K
P(t) = 2 ()t (=t)™ " P,
k=0
3
- 3y (1.4 1k 4 37K
RO-t) = 2 () (=t )"t 77 PLa e
k=0

Let j = 3-k, then

0
(1o ) 3 37 .
R(1-t) > (3250 (0-tg) to Pirs
j=3
0
- 3y + 3 (y-4 1373
= 3 (3) tg” (-t )™~ Pyy
J=3
= Plt,).

McLaughlin's method is not symmetric. The determination of the break point
B depends on some "previous" points. While moving from right-to-left along
the x-axis, these “previous" points are not the same as those associated
with moving from left-to-right. In general, different parabolas will be
constructed between Pi and Pi+1' However, the shape of the generated curve
is consistent in the sense that if Pi is determined as regular and a
parabola is found between Pi and P1+], when traversing from right-to-left,

P1+] will be determined as regular and a parabola (a different one) will be

constructed between Pi+1 and Pi'

Cubic Hermite form is also symmetric. rrom Pi to P1+], one has curve

19



represented as:

3. 3t2 4 1) P(O) + (- 2t

2

3

P(t) = (2t + 3t2) (1) +

3

(£3 - 2t% + 1) P'(0) + (£3 - £2) P (1) 0<t<l.

From P1+] to Pi’ one will have

R(t) = (2t = 3t2 + 1) P(1) + (- 2t3 + 3t%) p(0) +

(3 - 2t2 4 t) (- P () + (83 - %) (- P'(0)) 0

A
+

A
——

For every t in [0,1]
R(1-t) = [200-6)3 - 301-0)2 + 11 P(1) + [- 200-8)° + 301-0)%)-
P(0) + [(1-t)3 - 201-t)2 + (1-t)7 (- P'(1)) +

[(1-6)3 - (1-6)27 (- P'(0))

2 _ot3 .3+ 6t - 3t8

(- 2+ 6t - 6t2 + 2t3 + 3 - 6t + 3t2) P(O) +

st+3t2 -3 o2eat-2t? 1 -t) (P +

3t + 3t% - t3

3

= (2 - 6t + 6t + 1) P(1) +

—
p—]
]

-1 42t - t2) (-P'(0))

—
—t
]

= (-2t + 3t%) P(1) + (23 - 32 + 1) P(O)
(£ - 2) P (1) + (82 - 2t2 4 t) P'(0)
= P(t).
The remaining methods do not have the symmetry property.
A Bezier curve is independent of the coordinate system used to measure
the locations of control points. The same is true for the McLaughlin's

method because both use parametric form and the methods involve only control

points (and also beak point for the tatter). Cubic Hermite form is not axis

~ independent despite parametric form is also used. It depends on first order

derivatives as well as data points. These first order derivatives do not
undergo the same transformation as the axes. The other methods are also

axis dependent.

The piecewise Bezier method is only CO. Curves generated by this
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niethod in general contain corners and/or cu5p$. Nonetheless the method
provides very interesting curves. As can be expected, FicLaughlin's method
generates too many line segments along the nrocess. Some curves are.made up
of line segments only. However, when some line segments are mixed with a
few parabolas, the results are quite interesting and pleasing to the eyes.
These two methods could be valuable to those app]ications that call for
corners or cusps. The cubic Hermite method does not produce satisfactory
results. The curves have too many twists and turns. Method A gives the
smoothest curves. O0On a few occasions, the curve does overshoot data points.
Method B, B.I give very similar results. Curves are relatively smooth,
though not as smooth as those of A. They also produce some corners. The
overshoot parts are not as noticeable as those of A. Some curves produced
by B' appear to be a bit tighter in some areas.

The approximate amount of computer time in the unit of seconds needed
to generate the curves of Figures 1-20 are given in the following table.
These curves are generated by SMP version 1.5.0 running on a VAX 11/780 and

a DEC GIGI is used as graphic display.
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DS 12.
SC 12.
pH 12.
TKN 12.
TPO4 11.
DS 11.
SC 12.
pH 11.
TKN 1.
TPO4 11.

11.
10.
1.
10.
10.
11.
11.
11.
10.
10.

Table 6. Approximate time needed

METHOD

B [}

.95 33
78 33
7 33
65 33
51 33
68 33
68 33
57 33
62 33
70 3

in sec to

D £
12 22.35 22.88
A2 15.83 22.77
A3 18.35 22.85
.20 19.85 22.73
.25 13.27 22.75
.33 25.20 22.68
.15 26.57 22.90
.22 22.78 22.90
.07 18.43 22.65
.33 15.85 22.02

generate curve

Abbreviations: DS - Dissolved Silica

SC - Salinity Conductivity
TKN - Total Kjeldahl Nitrogen
TP04 - Total Phosphate
1 - low tide
h - high tide

References:

1. Brodlie, K.W., Mathematical Methods in Computer Graphics and design,
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2. MclLaughlin, H.W., Shape-Preserving Planar Interpolation : An Algorithm,
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3. Foley, J.D. and Vah Dam, A., Fundamentals of Interactive Computer
Graphics, Addison Wesley, Reading, Massachusetts, 1984.

4. Forrest, A.R., On Coohs and Other Methods for the Representation of
Curved Surfaces, Computer Graphics and Image Processing, Vol. 1, No. 4,
1972, pp. 341-359.
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Dissolved Silica (low tids, Hermitel)
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Figure 2. Dissolved Silica at low tide
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Salinity Conductivity Clow tide, DRAWI)
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Salinity Conductivity (low tide, Hermitel)
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Figure 4.

Salinity Conductivity at low tide
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pH (low tide, DRAWL)
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pH (low tids, Hermite1l)
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TN (low tide, DRAUL)

TKM (low tide, DRIW2)
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ORIGINAL PAGE I3
OF POOR QUALITY

TKN (low tide, Hermitel)
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ORIGINAL PAGE IS
OF POOR QUALITY

TPO4 (low tide, DRAWY) TPO4 (low tide, DRAWR)
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DRAW 1 - Method A
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DRAW 4 - Method D -
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ORIGINAL PAGE IS
OE POOR QUALITY

TPO4 (low tida, Hermitel)
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Figure 10. Total Phosphate at low tide
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Uizzolued Silica (high tide, DRAWL)
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Dissolved Silica at high tide

DRAW 1 - Method A
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CRIGINAL PAGE IS
OF POOR QUALITY

Dissolved Silica (high tide, Hermitel)
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Figure 12. Dissolved Silica at high tide
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Figure 13. Salinity Conductivity at high tide

DRAW 1 - Method A

DRAW 2 - Method B

DRAW 3 - Method B'

DRAW 4 - Method D
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ORIGINAL PAGE IS
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OF POOR QUALITY
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Figure 14, Salinity Conductivity at high tide
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pH (high tide, CRAWD PR thigh tide, DRALZ)
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Figure 15. pH at high tide
- DRAW 1 - Method A
DRAW 2 - Method B
DRAW 3 - Method B'
DRAW 4 - Method D
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pH (high tide, Hermitet)
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Figure 16. pH at high tide
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TEM (high tide, DRAWY)D
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Figure 17. Total Kjeldahl Nitrogen at high tide

DRAW 1 - Method A
DRAW 2 - Method B
DRAW 3 - Method B!
DRAW 4 - Method D -

39



TKN (high tide, Hermitel)
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Figure 18. Total Kjeldahl Nitrogen at high tide
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TPO4 (high tide, DRAWY) TFO4 (high tide, DRAWR)
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Figure 20. Total Phosphate at high tide
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SMP Code:

/* This program uses the osculatory method on page 11 of
Brodlie's Mathematical Methods in Computer Graphics
and Design to draw a smooth curve that passes through
10 given data points.

An additional point is added to each end of the data.
It is the mirror image of the first point (or the
last point) of the data.

A quadratic ﬁolynomial q(i,x)=ax"2+bx+c defined on

[x(i),x(i+1)] is determined. This polynomial passes
through points P(i-1), P(i), P(i+1) and is given by

ty(i-1)i {x(i-1)“2 x(i-1) 11 [ai
y(i) = [ x(i)*2 x(i) 1 b
y(i+1) x(i+1)%2 x(i+1) 1 ¢

on [x(i),x(i+1)], blend q(i,x), q(i+1,x) to get c(i,x)

by using
x - x(i+1) x - x(i)
c(iX) = mcmmcmccmeeeae - q(i,x) + —ccmmmmeeeeaem q(i+1,x)
x(i) - x(i+1) x(i+1) - x(1i)
Join these {c(i,x) : i = 2,3,..,10}~into a piecewise

smooth curve */

x : {-1,1,2,5,6,7,9,11.5,14,17,22,27}

Do[i,2,11, \ o
:; f } %E;E}fég‘gﬂimlﬁﬁ 2,x[1],1}, {x[i+1]%2,x[i+1],1}}; \
coe : ivit 5 B
qli,$u] : coeft1,1j ($u) "2 + coef[2;1] $u + coef[3,1]]

LY (o 1)/ (xl 1) al \
j,$uj : $u - x| j+1 x[ 3] - x[j+1 qlj,8u] +
(($u - x[j])/(xé % x{j])) q[j+1,$u}] :

[ su] : el2, $u]

fldu —$u>2 ci3,3%u

f $u_—$u>5 : ¢cl4,%u

flSu_=%u>6 cl5,%u

fl8u =8ud>7] : c|6,3u

fldu =%u>9] : c 7,3u

fl$u =$ud11.5] : c[a $u]
flsu =3ud>14 c 9 $u]

f $u —$u>17 c 10, $u]
Graph Smp 1] 0
Graph1 [1 :

Graph[ f t t,1 22 ,,,,{{o 22}11]
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X

/
D

/* Method B */
{-1,1,2,5,6,7,9,11.5,14,17,22,27}
* Estlmate slope at x(i) */
0[1 2,12,
atil L] - ylact D /Gla] - sl1-1])]

D

/
D

Hy My Hy Hy Hy) Hy My My Hy S

G

oli,2,11, \
s{317: 0.5 (m[3] * al[3+1])]
* Determine
olk,2,10, \
t1 = {{y k-1]},{y[k]},ﬂy[k+
t2 xlk=-1]%3, xtk-1]"2,
x{k]*3 , x[x]*2 ,
x k+1} 3, x k+1} 2,
3*x[k|%2, 2*x[k] ,
Mdiv[t1 t2]
coef{ }
coef| 3,1
iece c(i,x) together
$uf c[2,3%u
$u_=%u>2
$u_=%u>5
$u_=%u>6
$u =%ud>7
$u =3ud>9] :
$u =$ud>11.5] :

$u_“$u>14
$u =%u>17

3\
($u)"3

c
$u + coef|

*/

coef :
c[k,$u]

+

oe
4

*

3,3u
4,8u
5,3%u
6,3u
T,3u
c[8,$u]
cl9,8u]
c{10,%u]

00000 —

_GraSh[Sm ] 1] : O

raph[f[t ,t’1’2291:1{{0922}}];
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‘i’
M1

f

-

*

[k ;
SUNE
’1’\
I N
]

|

Bin ($u)*2 + \



/* Method B' */

{-1,1,2,5,6,7,9,11.5,14,17,22,27}

el

/*r Calculate Akima's slope estimate at x(i) */

UOL1’5£;},= f[ il - yli-11)/(x[1 ] - x[i-1])]
0.5 (n[3] + n[4])

10 ¢f§3§5§gggg%sfm?éfg§zl mbadptebali-td bl )
s[11] & m[11 ! o

v)

[ st 3 :
Dolj,4,9, \
ot

/* Define cubic polynomials c(i,x) */

Dolk,2,10, ‘

£1 y k-q},{y[k]} Sy[k” bofslx }}} ;

£2 x| k=-1]"3, x{k-1 , xlk=1],1}, \
xk]"s,xk]z.xk],1,\
x k+ } 3, x k+1} , xLk+1], 1 \
3*x[k]"2, 2%*x[k , 1 , O § 5\

coef : Mdiv| t1 s\

clk,sul : coefE1,1 ($u)*3 + coefB ,1] (8u)*2 + \

—il

coef{3,1] $u + coef[4,1

/* Piece c(i,x) together */
f $u] : c[2,$u]
fl$u_=3%ud>2 cl 3, %u

fl $u_=3u>5 cL4,3u
fl$u_=3%u>6 c{5,3%u
flSu_=%u>7 cl6,3u
fl$u =3%u>9] : c¢(7,3u
fl$u =$ud11.5] : 0[8 $u]
f $u_—$u>14 : ¢l 9, $u]
flSu =8u>17 c[10,3%u]
Graph[Sm ] 1 : 0

Graph[f[t],t,1,22]
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/* Cubic hermite form */

x : {-1,1,2,5,6,7,9,11.5,14,17,22,27}

/* Estimate first order derivative at x(i) */
Doli,2,12,

Dolj,2,11, \
[ ;

p
Do

q
Do

/*

Do[k,2[10, \

Graph[{f£2,t},f
. £ £

\
mli] : (y[i] - y(1-1D/Cel1] - =[i-1]D)]
: 0.5 (m[3] + m[j+1])]

sl 3

{1
21,11, p & catlp, {{x[k],y[x]}}]]

{}
»1,11, q = catlq, {{x[x],s[x]}}]]

define the cubic polynomials */
k,3$u] 2

-2
($u)"3 - 2 ($u)"2 + $u) q[k] +
($u)*3 - ($u)*2) q[k+1]]

,f[10,t]},¢,0,1

46

(3u)*3 - 3 ($u)*2 + 1) plk] + \
($u)*3 + 3 ($u)"2) plk+1] + \

3,t%,f{4,t] f(5,t],£06,t1,£[7,¢], \
9.t ]



/*

McLaughlin's Method */

delta{$i] : p[$i] - p[$i-1]

/* Determine the regularlty of the first point */
regu]ar1r$~n-l : [ a f- 1 ; \
t3 - $pt 1 5\
a.b >
/* Determine the regularity of the last point */

regularN[$p,$n] [ a : $pl/$n- 2} - $p{$n 1 i\

/*

b : $pl $n
a.b > 0

- $p{8n-1] ; \

Determine the regularity of the in between points */

regular[$p,$i

d : Det {{Elem[delta[$1 , 4117, Elem[delta[$1+2], 111}, \
Elem[delta[$i],{2}],Elem[delta[$i+2],{2}]} 5\
d1 : Det {{Elem[delta[$1 {1?], Elem[delta $1+1i, 1 +\
Elem|delta| $i |, {1 , \
{Elem[delta[$1] {2}], Elem[delta[$i+1 , 2{1 + \
Elem[delta[$i], {2} 135 N\
d2 : Det[{{Elem[delta[$i+2],{1}]+Elem[delta $i+1 {1171, \
Elem[delta[$i+2], {1 j}, \
{Elem[delta[$i+2],{2}]+Elem{delta{$i+1 ,{2%} .\
Elem[delta[$i+2],{2}]}1];\
del[$1i] ; \
“dels[$i] : d1 ;
And[a ~= o, Slgn[d] = Sign[d1], sign[d] = sign[d2]]]

~norm[$a,$b] : (3al1] - sv[1])"2 + (saf2] - sv[2])"2
./*

the set of data points P has been batched in already ¥/

0.5
10

{l

i

List[regular1[P]]

: Cat[r,r1]

: List[regular[p,Z]]

: Cat[r,r1]

Iff r[1]=1
[ [gfa r[2?=1 \
[a : p[2] + s*(p[3] - p[2]) ;.\
Sl B GRS
a - «\P - ’
e2 : norm[z P 2]] = normfa,p{1]] :\
Sol[{e1,e2},s] ; \
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p[

Do{ j,2,n-2,

it[1] « p[2] + s*(p[3] - p[2]) ; \
a pE1} + q*(it[17 - p[1ﬁ) \
b : pl2] + n*¥(a - p[2]) ; \
£1 : (b - p{2 )-(p§1} - pEZJ) =\
(o - plD L] = Bl
f2 norme,p 2i) = norm{b,pLi14] ; \
5015{f1 f2},hj s\
p[2] + n*(a - pEZ})] AN
[ a : p[2] + s*(p[3] = p[2]) ; \
et : (a - pE2 )-(pE1} - p[Z]) =\
(a - plt]).(pl2] - p[1]) ;.\
e2 : norm a,p 2]] = normfa,p 1]] 3
Sol[ e1 e2 sl 3 \
ig[1 [2] % s*(p[3] - pl2]) ;5 \
1]§t 1 ]]] .\

\
r1 : If[ j<n-2, regular| ,j+1] AN
regularN[p,n]] ; \
r2 : Llst[r1] ; \
r Cat[r r2]; \
54| T[J]‘1 \
r[3+1]=1, \
s : 1 + dels[ 1/ del{g]
it[j] - [J+2j + s*(p[j*+1] - p[J+2]) 5\
z : P 3115 q*(l?[J] -[p ? g ; §
: pLi*t] + s*(a - plj+ ;
c ip J] * h*(t[a 1] - p[3]) ; \
Sol \
t[3] - P[J] + h*(t[a 1] - pl3D], \
Cos e Lt ]m]\
tLil.: pLi*2] + s*(plj+1] - plj+2
t[3] : p{j%]]
t[n-1] : 1f[ r[n-1]=1, \
E a : pfn-1] + s*(t[n-2] - p{n-1 )
el : (a - p{n-1}) (pln] - pin-1]) =
(a - p (pln-1] - p[n])_;
e2 norm[a,p n- 1]] = norm[a p[n]] ;
Sol[{e1 e2},s H
p[n-1]_+ S*(t n-2] - pln-111,
pLn-1
Do[j,1,n-1, \
£f3,8u]

Graph[{f{

If(r [;] 1, $u’2 p[g+1E + 2 $u (1-%u) tl3] + \
(p

1,3u

(1-%u)"2 p

\
p[j] + $u

EJ+1] - p[3DD]]

8,$u ,f }9$u’0)1
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f 7’$u}:§{2,$u}, {g,gz}, [4,$u]jf[5,$u],f[6,$u], \




/* Bezier curve using 4 control points */

x : {1,2,5,6,7,9,11.5,14,17,22}
p ¢ Ul :
DoLi,1,10, p catl{p, {{x{i],y[1]}}1]
Do[i,1,7,3, \
fli,%u] sum[ Comb[3,k] ($u)*k (1 - $u)*(3-k) p[i+k],
: [Pt,p}
Graph[ffh £l4,¢],£[7,¢]},¢,0,1]
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IV. KINEMATICS OF ROBOT ARM

Introduction:

The purpose of this research work is to study the kinematics of a
single 1ink robot arm. In the solution of equations of motion of this
system, the symbolic manipulation programs MACSYMA and SMP have been used.
Also, some IMSL subroutines are also utilized.

The Lagrangian of the system is set-up in a fixed frame of referénce.
Hamiltonian is calculated. From this, Hamilton-Jacobi equation is obtained.

Solution of this equation gives the time evolution of the system.

Definition of symbols:

Before setting-up the necessary equations, the follwoing list of
symbols is defined. Note that subscript 1 denotes the first rod and
subscript 2 denotes the second rod. Subscripts to I denote the appropriate
axes about which the moment of inertia of .a particular rod is defined. See

Figures 1 and 2.

L = Lagrangian

T = Kinetic Energy

V = potential energy

[ = moment of inertia

¢ = angle of rotation

m = mass

g = gravitational acceleration
h = height

w = angular speed

1 = distance of CM from axis of rotation
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Lagrange's Equations:
The Lagrangian of the first rod is

Ly =Ty -V,

—

_ 1 2
"2 IlZ]Z] oy myghy .

Kinetic energva2 of second rod in the XZYZZZ system is

T. =

l .
5 5 1 2

Ya

Now the vector is

In X]Y]Z] system, the vector 32 is given by

> >

X ¥.2, T WX

(dEZ/dt)
2V2%2

(dé,/dt)
X]Y]Z1 2

This can be shown to give

. 2 2 2 2

(¢2 )XYZ v, + 07 0
1171
Therefore,
T2 in X]Y]Z] system is
1 2 1 22

(T,) = 51 o5+ =1 oy o

2 X]Y1Z] 2 2Y2Y2 2 2 2Y2Y2 1 72
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and

(V,) = m,gh, .
2 X]Y]Z] 2972

Kinetic energy of motion of CM of rod 2 about Z] axis is

From above, the Lagrangian of second rod in the X]Y]Z] system is

_ 1 2 2 1 *2
Ly = gmy 1 & + 51y y 9
2¥2
1 2 2
* ?Izvzvz 07 05 - mMygh, .

Total Lagrangian can be shown to be

L L, +L

1 2

1
2

where

_ 1 2
Iy = 3Lz 72+ my13)
14
1
I, = 17
2 = 2 Tavyy,
vV = g(m]h] + m2h2).
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Lagrange's equations of motion are

5. _2%"°%
1 (a + ¢§)
P _ 6 w2
2 T 2 %
with
a = I1/IZ‘

Hamiltonian Formulation:

Let the generalized coordinates be 5 = (¢], ¢2). Generalized momenta are

vector E.
Now,
- . . .2
Py = /3y = Iy ey + 1, 6 4
Py = aL/aq2 = 12 ¢
Hamiltonian H is
2
Ho= a Py - L
i=1
=;’I1 512+‘]2I2‘5§+]§;12‘;’$‘”§+V
_ .2 2 2
= p]/(Z(I] v 1, ¢2)) + p2/(212) +V
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Hamilton's equations of motion are

s - 2

R=g
p—
I

0p = aH/ap2 = p2/I2

©
-
|
i
o

- aH/aq]

- . _ 2 _ 2,2
Py = aH/an = I, ¢ p]/(I] + 1 ¢2) .

Note that Py = constant.

If one assumes the system to be non-dissipative, H = E = constant. In

this case,

= j'_ Aé(] - —C-'-—Z)%

P
2 1 + ¢2

remembering that Py = constant and defining

c = B/A >0.
with
A = 2(E-V)
and
B = v2(=pd) > o.

1

This leads to the interesting phenomena of bifurcation. When 0 < C < 1,
then '“’5ﬂ?.f = ., This corresponds to rotation. When C > 1, ¢2 < - (C-])%.

This corresponds to libration. Thus C = 1 is a bifurcation point.
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Hamilton-Jacobi Equation:

Redefine the momenta and coordinates as

Py = py/12

Py = pz”zé

5. = e/(1,/1,)2

2 PARSYRVIANEN

From now on, P1s Py and P will denote B], 52 and 32. With this
redefinition,
2
P, P
_—+ V.
201 +05)  F

Again, assuming the system to be conservative, Hamilton-Jacobi equation will

be given by
Y2 pg
2 + — + V =t
2(1+ ¢2) 2
with
W
p2=__
30,

From Hamilton-Jacobi theory, one finds that
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This leads to

o=t
= ali/ 9k
1
=/d¢2 B 21
[A - —]
1+¢2

6] is to be determined from initial condition on ¢2.

Similarly,

W = 8

aW/ay

which yields

| de,
by = By, Y .}/.
. Bt

(1+05) (A - —2

1+ ¢

Again, Bzuhas to be determined from initial condition on ¢].

In terms of C = B/A, one obtains

1 %
t + B.I = _é f
A [] - _._9__]%

(1+ 63)
and

do o

4’1:82*_;"/ T
A (1 +e5) [1- 1=,

2 -

2
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Evaluation of integra]s: ~
If one makes a change of variable from ¢2 to ¢ with ¢2 = cot 6, the

first integral reduces to

-F(e,K) + E (8,K) + & cote

where
kZ = ¢
s = [1-¢C sinze]%
and
F = Elliptical integral of first kind

m
]

E1liptical integral of second kind.
The second integral can similarly be evaluated to -F(e,k).

This completes the solution of the equation of motion of system. With
the evaluation of these integrals, one can obtain t(¢2). This can be

inverted to give ¢2(t). Once ¢2(t) is known, ¢](t) can be obtained from

second integral.

Use of MACSYMA:

The MACSYMA program which obtains the Hamilton-Jacobi equation is shown
on the following pages. In Figure 3, 05 is shown as a function of time t.
To eva]uafe tHe integrals, first SMP was used. But in doing so, some
serious errorswin the elliptical functions evaluation programs of SMP were
discovered. Inference Corporation was informed this. SMP has now corrected
these errors. Since SMP could not be used to evaluate the ®l1liptical

functions, the subroutines MMLINF, MMLIND and MMLINJS of IMSL were utilized.
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FIGURES:

Fig. 1.

.@L

N

Single link perpendicular robot arm. ¢ is the angle of rotation
of first arm and ) is the angle of rotation of second arm.
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Fig. 2. Fixed and rotating co-ordinate systems X]Y1Z] and X2Y222 and other
details used in analytic treatment.
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Analytical solution of H-J equation with initial conditions:
¢](O) =0, ¢2(0) =0, p1(0) =1, pZ(O) = 1, and y = 1.

y axis represents 2 (in dimensionless form) as a function
of time, and x axis represents time in seconds.

71



V. CONTRIBUTED PAPERS

The following papers were presented on the research conducted under
this project.

1. Solutions of Van Der Pol's Equations Using MACSYMA
A. Punjabi and J. Bivins
NASA HBCU Graduate Student Workshop
NASA LaRC, Hampton, VA, March 1985

2. Kinematics of Robot Arm
A. Punjabi and J. Bivins
NASA HBCU rorum, Atlanta, Georgia, April 1986

3. Solutions of Hamilton-Jacobi Equation for Robot Arm Using Symbolic
Manipulation Program ‘
A. Punjabi and J. Bivins

Annual Meeting of Virginia Academy of Sciences, Harrisonburg, VA,
May 1986
Virg. J. Sc., 37, 53 (1986)

Abstracts of these papers are shown on following pages.

72




- - - "

KINEMATICS OF ROBOT ARM USING MACSYMA
A. Punjabi and J. Bivins
Department of Mathematics

Hampton University
Hampton, Va 23668

ABSTRACT

The Hamiltonian of the robot arm shown in the accompanying figure is

given by:
2 2
P P
H = __.__l_____._ + _ji_ + Vv
2(I]+12¢22) 212

We obtain the Hamiltonian and attempt to solve the Hamilton-Jacobi
equation for the characteristic function F2. We also attempt to get the
Poincare surface of section for this problem. A1l this is done using one of
the Symbolic Manipulation Programs. Our final goal is the study of

nonlinear dynamical phenomena arising in this system.
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SOLYUTION OF THE HAMILTON-JACOBI SQUATION FOR SINGLE LINK ROBOT ARM USING
SYMBOLIC MANIPULATION LANGUAGES

Alkesh Punjabi and James Bivins
Department of Mathematics
Hampton University

Hampton, VA 23668

First the Lagrangian L for single link robot arm is set up in the fixed
system of coordinates.A Then the Hamiltonian H and the Hamilton's equation
of motion are obtained. Hamilton-Jacobi equation for the characteristic
function W is set up. H-J equation is solved in closed form. All these
steps are done using the symbolic manipulation languages MACSYMA and SMP.

(Supported by NASA under MACSYMA project.)
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